
Eur. Phys. J. C 1, 285–291 (1998) THE EUROPEAN
PHYSICAL JOURNAL C
c© Springer-Verlag 1998
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Abstract. We study the high energy behaviour of elastic scattering amplitudes within the leading logarithm
approximation. In particular, we cast the amplitude in a form which allows us to study the internal
dynamics of the BFKL Pomeron for general momentum transfer. We demonstrate that the momentum
transfer acts as an effective infrared cut-off which ensures that the dominant contribution arises from short
distance physics.

1 Introduction

We are interested in the study of elastic scattering in the
Regge limit where s� −t. We might expect to be able to
use the methods of perturbative QCD if the typical dis-
tances involved in the interaction are small. Whilst this
may be true for some elastic scattering processes (for ex-
ample, two highly virtual photons at large t) it is certainly
not the case for others (for example, a pair of protons at
t ' 0). It is therefore necessary to check the self consis-
tency of a perturbative calculation by investigating the
typical distances involved in the interaction. If these turn
out to be large then, even if the calculation is infrared
finite, there is little justification for using a perturbative
approach. In this paper, we consider the elastic scatter-
ing of generic colourless states via BFKL Pomeron [1] ex-
change. We formulate the amplitude in such a way that
we can readily identify the typical distances involved in
the exchange.

For elastic scattering at t = 0, the typical transverse
momenta of the gluons which constitute the Pomeron are
determined primarily by the sizes of the external parti-
cles. By studying the scattering of small size objects one
therefore expects that perturbative QCD is valid. How-
ever, one must also take into account the diffusion proper-
ties characteristic of the BFKL exchange, namely as one
moves away in rapidity from the external particles the
width of the transverse momentum distribution broadens.
This means that at sufficiently high centre of mass ener-
gies one is destined to pick up a large contribution from
long distance effects. It is the main purpose of this paper
to demonstrate that for t 6= 0, the situation changes rather
dramatically. The scale |t| effectively acts as an infrared
cut-off, ensuring that the essential physics comes from the
region where all the momenta are bigger than ∼ √−t. As
a by–product we derive general formulae, which are useful
in computing elastic scattering amplitudes in the Regge
limit.
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Fig. 1. BFKL Pomeron exchange in elastic scattering

2 The BFKL Pomeron

We start by recalling the results of Lipatov [2] for the
solution of the BFKL equation for arbitrary momentum
transfer, q2 = −t. The Pomeron is described by the uni-
versal four-point function, F , depicted in Fig. 1. In terms
of this function, the amplitude for scattering the colourless
states A and B elastically is

A(s, t) =
is

(2π)4

∫
d2k1 d

2k2 ΦA(k1,q)

×F (y,k1,k2,q)ΦB(k2,q). (1)

The impact factors ΦA and ΦB determine the coupling
of two gluons to the external states and we define them
to contain no propagator factors (these are contained in
F ). Rather than work in transverse momentum space, it
is more convenient to work in the space of impact param-
eters. Accordingly we define

F (y,k1,k2,q) =
1

(2π)6

∫
d2b1 d

2b′1 d
2b2 d

2b′2{
e−i[k1.b1+(q−k1).b′

1−k2.b2−(q−k2).b′
2]f(y,b1,b′1,b2,b′2)

}
.

(2)



286 J.R. Forshaw, P.J. Sutton: Diffusion and the BFKL pomeron

 �

B

 A

�B

�A

~F

~F

k k� q

Fig. 2. Elastic scattering amplitude as a convolution of the
wavefunctions ψA and ψ∗B

For future notational convenience we denote this transfor-
mation

F (y,k1,k2,q) = T̂ {f(y,b1,b′1,b2,b′2)} . (3)

Lipatov determined that

f(y,b1,b′1,b2,b′2)

=
∫ +∞

−∞
dν

ν2

(ν2 + 1/4)2
Eν(b1,b′1)Eν∗(b2,b′2) eαSχ(ν)y

(4)

where αS = Ncαs/π and the function χ(ν) is given by

χ(ν) = 2ψ(1)− ψ(1/2 + iν)− ψ(1/2− iν) . (5)

Here ψ(z) is the logarithmic derivative of the gamma func-
tion, Γ (z). The eigenfunctions, Eν , are given by

Eν(b1,b′1) =
( |b1 − b′1|
|b1||b′1|

)1+2iν

. (6)

We have not included the contributions from non-zero con-
formal spin, since these vanish in the high energy limit.

It is our aim to study the internal dynamics of the
BFKL Pomeron. To do this we “break” the Pomeron into
two pieces, as shown in Fig. 2. The procedure requires a
little care, in order to account for the propagators which
are present on the external legs. We utilize the following
identity:

F̃ (y, k1, k2, q) =
∫

d2k F̃ (y′, k1, k, q) F̃ (y − y′, k, k2, q)

(7)
where

F̃ (y, k1, k2, q) = k1(k1 − q)k∗2(k2 − q)∗ F (y,k1,k2,q).
(8)

We have introduced complex numbers to represent the
transverse momentum vectors (k = kx + iky). This defi-
nition means that F̃ contains the part propagators 1/k∗1 ,
1/(k1 − q)∗, 1/k2 and 1/(k2 − q) on its external legs. The
wavefunctions, ψA,B , contain the BFKL dynamics and are
given by

ψA(y,k,q) =
∫

d2k1 ΦA(k1,q)
F̃ (y, k1, k, q)
k1(k1 − q)

(9)

and

ψ∗B(y,k,q) =
∫

d2k2 ΦB(k2,q)
F̃ (y, k, k2, q)
k∗2(k2 − q)∗

. (10)

The scattering amplitude is then given by

A(s, t) =
is

(2π)4

∫
d2k ψA(y′,k,q)ψ∗B(y − y′,k,q). (11)

In terms of Lipatov’s solution in impact parameter space
we have

F̃ (y, k1, k2, q)
k1(k1 − q)

= T̂
{
(4∂b2∂b′2)f(y, b1, b′1, b2, b

′
2)
}
. (12)

Similarly,

F̃ (y, k1, k2, q)
k∗2(k2 − q)∗

= T̂
{
(4∂b∗1∂b′∗1 )f(y, b1, b′1, b2, b

′
2)
}
. (13)

We can easily calculate ∂b2∂b′2f(y, b1, b′1, b2, b
′
2) using

∂b2∂b′2E
ν∗(b2,b′2) =

(ν2 + 1/4)
(b2 − b′2)2

Eν∗(b2,b′2). (14)

We thus have

F̃ (y, k1, k2, q)
k1(k1 − q)

= T̂
{∫ +∞

−∞
dν

4ν2

(ν2 + 1/4)

×E
ν(b1,b′1)Eν∗(b2,b′2)

(b2 − b′2)2
eαSχ(ν)y

}
. (15)

For our purposes it is beneficial to work in terms of the
momentum transfer, q, and size, b. Transforming to this
mixed representation, we define the new wavefunctions:

ΨA(y,b,q) =
∫

d2k
2π

e−ik.b ψA(y,k,q) (16)

and

Ψ∗B(y,b,q) =
∫

d2k
2π

e+ik.b ψ∗B(y,k,q) . (17)

The scattering amplitude is now given by

A(s, t) =
is

(2π)4

∫
d2bΨA(y′,b,q)Ψ∗B(y − y′,b,q). (18)

By evaluating these wavefunctions we are able to compute
the probability for finding the Pomeron with size b at
rapidity y′.

To this end, we shall proceed to compute the wave-
function, ΨA. Using (9, 15, 16) we obtain

ΨA(y,b,q) =
1

(2π)6

∫
dν

4ν2

(ν2 + 1/4)

×eαSχ(ν)y V A
ν (q)Wν(b,q) (19)

where

V A
ν (q) =

∫
d2k1 d

2b1 d
2b′1

×e−i(k1.b1+(q−k1).b′
1) ΦA(k1,q)Eν(b1,b′1) (20)
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and

Wν(b,q) =
∫

d2k
2π

d2b2 d
2b′2

×e−i(k.b−k.b2−(q−k).b′
2) E

ν∗(b2,b′2)
(b2 − b′2)2

. (21)

All of the dependence on the impact parameter
ΦA(k1,q) is contained within the function V A

ν (q). We
proceed to calculate Wν(b,q) and V A

ν (q) separately. The
k integral of (21) produces a delta function which fixes
b = b2 − b′2. Introducing R = (b2 + b′2)/2 we obtain

Wν(b,q) =
2π
b2

∫
d2R e+iq.(R−b/2)

×
(

b2

(R− b/2)2 (R + b/2)2

)1/2−iν
. (22)

The integral over R can be performed using standard
Feynman parametrization techniques:

Wν(b,q) =
(2π)2|b|

Γ 2(1/2− iν) b2

(
q2

4

)−iν
×
∫ 1

0
dx

e−iq.bx√
x(1− x)

K2iν(|q||b|
√
x(1− x)) (23)

where K2iν is a modified Bessel function. The x integral
can be performed exactly. In particular, we note that∫ 1

0
dx

e−iq.bx√
x(1− x)

K2iν(|q||b|
√
x(1− x))

= e−iq.b/2
∫ 1

0

2dx√
1− x2

cos
(

1
2
q.b

√
1− x2

)
×K2iν(

1
2
|q||b|x) (24)

and that the right hand side is tabulated in Gradshteyn
& Ryzhik [3] (6.737(3)). We find

Wν(b,q) =
2iπ4|b|

Γ 2(1/2− iν) b2

(
q2

4

)−iν
e−i

q.b
2 ∆ν(b,q)

(25)
where

∆ν(b,q) =
1

sinh2πν

×
eπνJiν


√

(q.b)2 − q2|b|2 − q.b

4


×Jiν


√

(q.b)2 − q2|b|2 + q.b

4


−(ν → −ν)

]
. (26)

Equivalently1, we have

∆ν(b,q) =
2i

sinh2πν
Im [Jiν(bq∗/4)Jiν(b∗q/4)] . (27)

We next turn our attention to V A
ν (q). This requires

some choice for the impact factor ΦA(k1,q). We choose
to write the impact factor in the form

ΦA(k,q) =
∫

d2r fA(r)
(
eik.r/2 − e−ik.r/2

)
×
(
ei(q−k).r/2 − e−i(q−k).r/2

)
. (28)

This is a general choice, appropriate for scattering off
colourless states. Assuming that fA(r) = fA(|r|), the cal-
culation of the function V A

ν (q) can be computed using the
method demonstrated in [5]. The result is

V A
ν (q) = 2(2π)5

Γ (1/2− iν)
Γ (1/2 + iν)

(
q2

4

)−1+iν

×
∫ 1/2+i∞

1/2−i∞

dz

2πi

{∫
dr

(
q2r2

16

)z

(−fA(r))

× Γ (1− z − iν)
Γ (1/2 + z/2− iν/2)Γ (1− z/2− iν/2)

× Γ (1− z + iν)
Γ (1/2 + z/2 + iν/2)Γ (1− z/2 + iν/2)

}
. (29)

This is a particularly convenient way of expressing V A
ν

since it allows the limits 1/q2 � r2 and 1/q2 � r2 to
be extracted with ease (by focusing on the poles lying
closest to the contour). Alternatively, we could utilize (24)
to write

V A
ν (q) = 8iπ5

∫
d2r fA(r) |r|e−iq.r

(
q2

4

)iν

∆ν(r,q).

(30)
This latter form does not assume fA(r) = fA(|r|).

3 Inside the BFKL Pomeron

We are now in a position to investigate the typical dis-
tances involved in the exchange. We can “look inside” the
Pomeron and examine its size at some intermediate rapid-
ity, y′. The probability density for having a Pomeron with
size |b| at rapidity y′ is proportional to the product of the
wavefunctions, ΨA(y′,b,q)Ψ∗B(y − y′,b,q) (see (18)). We
need to make some assumption regarding the nature of
the external states in order to deduce the process depen-
dent V A

ν . We work with (29) under the assumption that
the external state is characterised by a single scale, Q. In
this case, we can write∫ ∞

0
dr

(
q2r2

16

)z

(−f(r)) = Q

(
q2

16Q2

)z

h(z) (31)

1 We note that this is consistent with the formula given in
[4]
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where h(z) is some dimensionless function of z which con-
tains poles only to the left of the z plane contour, Re
z = 1/2, otherwise the impact factor ΦA is not defined.
For photon and vector meson external states the following
expressions for h(z) are needed:

−f(r) = Q2K0(Qr) ⇒ h(z) = 22z−1Γ 2(1/2 + z)
−f(r) = Q2K1(Qr) ⇒ h(z) = 22z−1Γ (1 + z)Γ (z).

(32)

By way of example we also note that

−f(r) =
Q

r
e−Q

2r2 ⇒ h(z) =
Γ (z)

2

−f(r) = rQ3e−Q
2r2 ⇒ h(z) =

Γ (1 + z)
2

−f(r) = δ(r2 − 1/Q2) ⇒ h(z) = 1/2. (33)

The existence of double poles induces additional loga-
rithms in the final answer but does not affect any of our
main conclusions. Subsequently, we will therefore assume
that h(z) contains only single poles. We can now proceed
to examine the wavefunction in the limits q2 � Q2 and
q2 � Q2.

The case when q2 < 16Q2

In this case the z-plane contour of (29) can be closed in
the right half plane. We consequently pick up the poles
in V A

ν which come from the process independent part, i.e.
at z = 1 ± iν. Evaluating the integral keeping only the
nearest pole gives

Vν(q) =
2(2π)5Q√

π

Γ (1/2− iν)
Γ (1/2 + iν)

(
q2

4

)−1+iν

×
[(

q2

16Q2

)1+iν
h(1 + iν)Γ (−2iν)

Γ (1/2− iν)Γ (1 + iν)

+
(

q2

16Q2

)1−iν
h(1− iν)Γ (2iν)

Γ (1/2 + iν)Γ (1− iν)

]
.(34)

The corrections to this expression are suppressed by pow-
ers of q2/Q2. We have only the ν integral to perform in
order to obtain the wavefunction ΨA. In order to pro-
ceed further we consider the two regions |q| > 1/|b| and
|q| < 1/|b| separately.

In the region where |q||b|<∼ 1 we can use the small
argument expansions of the Bessel functions, and for large
y the dominant contribution to the ν integral in (19) will
come from the region of small ν, hence we may write

Wν(b,q) ≈ (2π)2|b|
2νb2

(
q2

4

)−iν
sin

(
ν ln(16/(q2b2))

)
.

(35)
Whilst for Vν the corresponding small ν limit of (34) is

V A
ν (q) ≈ 16h(1)π4

Qν

(
q2

4

)iν

sin
(
ν ln(16Q2/q2)

)
. (36)

For the wavefunction, we thus obtain

ΨA(y,b,q) ≈ 8h(1)
|b|
Qb2

∫
dν eαSχ(ν)y sin

(
ν ln(16/(q2b2))

)
× sin

(
ν ln(16Q2/q2) . (37)

Expanding the BFKL eigenfunction about ν = 0 allows
the integral to be performed. Using χ(ν) ≈ 4 ln 2−14ζ(3)ν2

yields

ΨA(y,b,q) = 4
√
πh(1)

|b|
Qb2

eω0y

(a2y)1/2

×
[
exp

(− ln2(b2Q2)
4a2y

)
−

× exp
(− ln2(256Q2/(q4b2))

4a2y

)]
. (38)

Here a2 = 14αSζ(3).
In the region where |q||b| � 1 the function V A

ν is
again given by (36). For Wν we take the large argument
approximation to the Bessel functions. After some algebra
we find that

Wν(b,q) ' (2π)2

|q|b2
(

q2

4

)−iν
(1 + e−iq.b) . (39)

Inserting (36) and (39) into our expression for ΨA (19)
yields

ΨA(y,b,q) ≈ 16h(1)
Q|q|b2 (1 + e−iq.b)

×
∫

dν eαSχ(ν)y ν sin
(
ν ln(16Q2/q2)

)
(40)

which evaluates (on expanding the eigenvalue) to

ΨA(y,b,q) =
8h(1)

√
π

Q|q|b2 (1 + e−iq.b)
eω0y

(a2y)3/2
ln(16Q2/q2)

× exp(− ln2(16Q2/q2)/4a2y) . (41)

Note that in the limit q → 0 we only have the region
described by (38) in which the second exponential term
vanishes. This corresponds to the well known result for
diffusion about the size of the external state, Q. In that
case there is nothing to prevent diffusion into the large
distance region where a perturbative calculation may be
unreliable. (see, e.g. [6] for a more detailed study of diffu-
sion at t = 0.) However, the effect of a finite q2 is dramatic.
Equation (41) reveals that there is no diffusion inside the
region |b||q| > 1. Moreover, the distribution in this region
vanishes rapidly as b increases. The result is that diffu-
sion to large sizes is effectively blocked beyond the scale
1/|q| [7]. The momentum transfer acts as an effective in-
frared cut-off. In Fig. 3 we illustrate the diffusion for the
case q = 0. This should be compared with Fig. 4 in which
we show the equivalent distributions for the case q2 = 1
GeV2. In generating these plots we chose a simple Gaus-
sian form for the function f(r) which characterises the
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Fig. 3. The distribution of gluon size inside the BFKL
Pomeron for |t| = q2 = 0 and Q = 10 GeV as described
by Ψ = ΨA b2/|b|. The plot shows the broadening of the dis-
tribution as the rapidity, y, is increased through the values
y = 10, 15 and 20. Nothing prevents diffusion into the long
distance region. The curves are from a numerical calculation
of (19) using (25) and (29). Each curve has been scaled by a
factor e−ω0y
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Fig. 4. The distribution of gluon size inside the BFKL
Pomeron for |t| = q2 = 1 GeV2 and Q = 10 GeV as de-
scribed by Ψ = ΨA b2/|b|. The plot shows the broadening of
the distribution as the rapidity, y, is increased through the val-
ues y = 10, 15 and 20. The scale q acts as an effective infrared
cut off preventing diffusion into the infrared region. The curves
are from a numerical calculation of (19) using (25) and (29).
Each curve has been scaled by a factor e−ω0y
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Fig. 5. The distribution of gluon size inside the BFKL
Pomeron for |t| = q2 = 1 GeV2 and Q = 0.1 GeV as de-
scribed by Ψ = ΨA b2/|b|. The plot shows the broadening of
the distribution as the rapidity, y, is increased through the
values y = 10, 15 and 20. The scale q acts as an effective in-
frared cut off preventing diffusion into the infrared region. The
curves are from a full numerical calculation of (19) using (25)
and (29). Each curve has been scaled by a factor e−ω0y

external impact factor, |f(r)| = Q/re−Q
2r2 . As we noted

earlier this corresponds to a function h(z) = Γ (z)/2.

The case when q2 > 16Q2

For this case the z-plane contour integral must be
closed in the left half plane. The only poles are those which
arise from the process dependent factor h(z). In the limit
q2 � 16Q2 the rightmost pole gives the leading power
dependence. If this is a single pole at z = −z0 then we
can take

h(z) ≈ hL(z)
z + z0

. (42)

We can now evaluate V A
ν :

Vν(q) = 2(2π)5
Γ (1/2− iν)
Γ (1/2 + iν)

(
q2

4

)−1+iν

×QhL(−z0)
(

16Q2

q2

)z0

× Γ (1− z0 − iν)
Γ (1/2 + z0/2− iν/2)Γ (1− z0/2− iν/2)

× Γ (1− z0 + iν)
Γ (1/2 + z0/2 + iν/2)Γ (1− z0/2 + iν/2)

. (43)

The corrections are suppressed by powers of Q2/q2. We
can again separate the analysis into two regions consisting
of large and small |q||b|.

In the region where |q||b|<∼ 1 the function Wν(b,q)
is again given by (35). For Vν the corresponding small ν
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Fig. 6. The width (as defined by half the maximum) of the
distribution b2ΨAΨ

∗
B for the case QA = QB = 10 GeV and

y = 20. The dotted lines represent the |t| = 0 case. The full
lines represent the case |t| = q2 = 1 GeV2
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Fig. 7. The width (as defined by half the maximum) of the
distribution b2ΨAΨ

∗
B for the case QA = 10 GeV, QB = 10−2

GeV and y = 20. The dotted lines represent the |t| = 0 case.
The full lines represent the case |t| = q2 = 1 GeV2

limit of (43) is

V A
ν (q) ≈ 64π4

(
q2

4

)−1+iν (64Q2

q2

)z0

Q h̃L(z0) . (44)

where we have further defined

h̃L(z0) = hL(−z0)
(
Γ (1/2 + z0/2)
Γ (1/2− z0/2)

)2

. (45)

This form is only appropriate providing z0 does not induce
poles in the denominator, i.e. z0 is not an odd integer. Al-
though it would be straightforward to accommodate such
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Fig. 8. The width (as defined by half the maximum) of the
distribution b2ΨAΨ

∗
B for the case QA = QB = 10−2 GeV and

y = 20. The dotted lines represent the |t| = 0 case. The full
lines represent the case |t| = q2 = 1 GeV2

values of z0 (since they merely produce an additional fac-
tor of ν2 in the numerator) we shall ignore this possibility
in the following. This does not affect our main conclusions.
For the wavefunction, we now obtain

ΨA(y,b,q) ≈ 128h̃L(z0)
Q|b|
b2q2

(
64Q2

q2

)z0

×
∫

dν ν eαSχ(ν)y sin
(
ν ln(16/(q2b2))

)
. (46)

Expanding the BFKL eigenfunction about ν = 0 gives

ΨA(y,b,q) = 64
√
πh̃L(z0)

Q|b|
b2q2

(
64Q2

q2

)z0

× eω0y

(a2y)3/2
ln(16/(q2b2))

× exp
(− ln2(16/(q2b2))

4a2y

)
. (47)

In the region where |q||b| � 1 the function V A
ν is again

given by (44) whilst Wν(b,q) is given by (39). Inserting
(44) and (39) into our expression for ΨA (19) yields

ΨA(y,b,q) ≈ 256
Q

|q|3b2 h̃L(z0)
(

64Q2

q2

)z0

×(1 + e−iq.b)
∫

dν ν2 eαSχ(ν)y (48)

which evaluates (on expanding the eigenvalue) to

ΨA(y,b,q) = 128
√
π

Q

|q|3b2 h̃L(z0)
(

64Q2

q2

)z0

×(1 + e−iq.b)
eω0y

(a2y)3/2
. (49)



J.R. Forshaw, P.J. Sutton: Diffusion and the BFKL pomeron 291

Notice that the wavefunction of (47) corresponds to dif-
fusion about b2 = 16/q2, i.e. the diffusion is no longer
centred around the external scale, Q, determined by the
impact factor. As before the momentum transfer q acts as
an effective infrared cut-off. These properties can be seen
in Fig. 5.

The wavefunction Ψ∗B can be computed analogously.
For the sake of illustration, we shall assume that the ex-
ternal states, A and B, are defined in terms of the scales
QA and QB respectively and that in all other respects they
are equal. In this case, Ψ∗B is simply the complex conjugate
of ΨA with QA replaced by QB . Note that the complex fac-
tors in the denominators always combine to produce the
factor 1/b4 in the probability density (= ΨAΨ

∗
B). We shall

evaluate the probability distribution ΨAΨ
∗
B for three sepa-

rate cases. Firstly, when the external scales (QA and QB)
are both larger than the momentum transfer; secondly,
when one is large and one is small and finally when both
are small.

In Figs. 6, 7 and 8, we show the width of the b-distri-
bution as a function of y′. The width is determined by
evaluating the value of lnb when b2ΨAΨ

∗
B is half of its

maximum. Since

A(s, t)
s

∼
∫

d(lnb2)b2 ΨA(y′,b,q)Ψ∗B(y − y′,b,q) (50)

it follows that for the dominance of short distance physics
the “cigar” must remain inside the region of small |b|. Fig-
ure 6 shows the case when both external scales are larger
than the momentum transfer, q2. In this case the diffu-
sion is similar to the q2 = 0 case, i.e. increasingly larger
distances are probed as y′ approaches y/2. However, move-
ment to distances larger than ∼ 1/|q| is blocked. This (al-
most) total exclusion from the region |b|>∼ 1/|q| remains
even if one or both of the external scales becomes small. In
these cases the picture is quite different from the q2 = 0
case. Figure 7 shows the diffusion when one external scale
is large and the other is small. The case where both ex-
ternal scales are smaller than the momentum transfer, q2

is shown in Fig. 8.
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